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Fig. 1. Our skeleton-agnostic motion embedding allows us to develop Motion Matching controller using a collection of heterogeneous motion datasets.
Additionally, our framework enables on-the-fly morphing to other characters by easily changing the target skeleton.

Learning deep neural networks on human motion data has become common
in computer graphics research, but the heterogeneity of available datasets
poses challenges for training large-scale networks. This paper presents a
framework that allows us to solve various animation tasks in a skeleton-
agnostic manner. The core of our framework is to learn an embedding space
to disentangle skeleton-related information from input motion while preserv-
ing semantics, which we call Skeleton-Agnostic Motion Embedding (SAME).
To efficiently learn the embedding space, we develop a novel autoencoder
with graph convolution networks and provide new formulations of vari-
ous animation tasks operating in the SAME space. We showcase various
examples, including retargeting, reconstruction, and interactive character
control, and conduct an ablation study to validate design choices made
during development.
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1 INTRODUCTION
Learning deep neural networks on human motion data has become
a common practice in computer graphics research. Since the early
90s, human mocap data have been collected from various sources
and are often readily available online. However, using all available
datasets to train a large-scale network is still challenging due to
their heterogeneity, where the characters in the datasets often have
different skeletal structures, body proportions, joint types, and joint
coordinate systems. Unlike other modalities such as images, videos,
or audio, converting between different motion representations is
not straightforward but requires a non-trivial procedure called re-
targeting, which involves solving non-linear optimization problems.
The AMASS dataset [Mahmood et al. 2019], which recently be-

came available to the graphics and vision communities, has con-
verted many existing heterogeneous datasets into a unified data
format based on SMPL [Loper et al. 2015]. Although this unified
dataset has paved the way for building large-scale deep neural net-
workmodels for understanding and generating humanmotion, there
are several technical and practical limitations to the network model
learned from this kind of unified datasets. First, it can only generate
motions with the same skeleton, which limits the applicability of
the learned model in various graphics applications. For example, a
computer game may have many characters with different skeletons.
Having multiple skeleton-specific network models for individual
characters is inefficient and inconvenient. Second, the data format
relies on SMPL, which was built based on human body scans. There-
fore, it is cumbersome to use the network models based on SMPL
for characters with significantly different body proportions from
normal humans.
In this paper, we present a new framework that allows motion

data to be collected, represented, edited, and employed in various
animation tasks regardless of their skeletal structure (e.g. body pro-
portions, limb lengths, and the number of joints). From the training
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data collected from various sources, which may include motion
data with diverse skeletons, we learn a Skeleton-AgnosticMotion
Embedding (SAME in short) for biped characters by using a novel
autoencoder structure based on graph convolution networks, which
can efficiently disentangle skeleton-relevant information from the
input motion while preserving its original semantics. Our frame-
work performs animation tasks in the SAME space, where we pro-
pose new formulations for popular animation tasks such as motion
classification, retargeting, missing joint reconstruction, motion sim-
ilarity, and interactive character control. Furthermore, the ablation
studies to verify the our design choices are also demonstrated. Code
for the paper is available at https://github.com/sunny-Codes/SAME.

2 RELATED WORK

2.1 Skeletal Variation
Researchers have explored methods to address skeletal variations
in character animation, with a fundamental procedure known as
retargeting, which involves transforming motions from a source
character to match a target character. It is formulated as non-linear
trajectory optimization with spatial and temporal constraints, and
efficient algorithms have been proposed [Choi and Ko 1999; Gleicher
1998; Lee and Shin 1999; Shin et al. 2001; Sturman 1998; Tak and Ko
2005]. Recently, several deep learning-based approaches for retarget-
ing have been introduced, such as retargeting in the unsupervised
setting [Aberman et al. 2020; Lim et al. 2019; Villegas et al. 2018].
Aberman et al. [2020] proposed a method for retargeting among
different homeomorphic skeletons which may have the same set
of end-effectors but different numbers of joints by constructing a
shared latent space among homeomorphic skeletal motions. Our
method differs in that we build a single network to address skele-
tal variety while their method requires a separate network to be
trained for each skeletal structure. Aside from retargeting, skeletal
variation has also been explored in other motion generation mod-
els. Hou et al. [2021] suggested motion synthesis for the skeleton
parameterized by sizes and proportions, Li et al. [2021] developed a
general-purpose human motion prior that accommodates varying
skeletons. In physics-based character control, it is often utilized to
produce physically plausible motions given skeletal structures and
physical properties [Park et al. 2022; Won and Lee 2019].

2.2 Motion Latent Space
Manipulating motions directly is often challenging because they are
high-dimensional time-series data. Constructing compact represen-
tations has gained attention for a long time not only in computer
graphics but also in other domains such as robotics and computer
vision. Prior to the deep learning era, attempts were made using
Principal Component Analysis [Chai and Hodgins 2005; Safonova
et al. 2004; Shin and Lee 2006] and Gaussian Process Latent Variable
Models [Wang et al. 2007] to construct low-dimensional motion em-
beddings. Holden et al. [2015] first applied deep learning based on
convolutional auto-encoder and demonstrated several applications
like motion denoising, similarity search, and interpolation within
the embedding space. Aberman et al. [2019] presented character-
agnostic latent space specialized for 2D motion retargeting. Starke

Fig. 2. System overview.

et al. [2022] proposed learning periodic embeddings to capture the
spatio-temporal structure of motion data.

Recently, there have been continuous efforts to build a universal
and generalizablemotion embedding, often calledmotion prior [Ghor-
bani et al. 2020; Habibie et al. 2017; Ling et al. 2020], inspired by
the success of large-scale deep neural networks in other domains
like images and natural language processing [Brown et al. 2020;
Chowdhery et al. 2022; Touvron et al. 2023]. The recently introduced
AMASS dataset [Mahmood et al. 2019], which unified more than 40
hours of existing datasets into SMPL [Loper et al. 2015; Pavlakos
et al. 2019] formats, has further sparked the research direction of
learning motion prior [He et al. 2022; Raab et al. 2023; Rempe et al.
2021; Yuan et al. 2022]. However, they are applicable only to normal
humans with a fixed skeleton topology, which poses limitations
when applying the learned models to graphics applications where
similar but different topologies may exist even in the same applica-
tion. We present a framework that enables users to perform various
animation tasks at an abstract level, with the flexibility to retarget
the output motions to specific downstream applications as needed.

2.3 Graph Based Motion Processing
Our novel autoencoder relies on Graph Neural Networks (GNN),
which extend the convolution operation to non-grid data structures
represented by graphs. Yan et al. [2018] proposed a spatiotemporal
graph convolution model for action recognition, which has been
further extended in many other applications [Huang et al. 2020; Jang
et al. 2022; Li et al. 2019; Shi et al. 2019]. Xu et al. [2020] developed
a model that generates animation rigs from 3D character meshes
using the edge convolution network suggested byWang et al. [2019].
Aberman et al. [2020] suggested a graph-based skeleton operation
to construct a latent space for different yet homeomorphic skeleton
structures. They learned a separate kernel for each body joint, re-
quiring a separate network for each skeletal topology. In contrast,
our framework learns a shareable kernel for all joints, allowing a
single network model to handle arbitrary skeletal topologies.

3 OVERVIEW
Consider a general character animation task 𝑇 . Given a single pose,
a motion clip, or a motion dataset as input, one can perform analysis
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tasks (e.g. similarity measure, classification, clustering), editing tasks
(e.g. retargeting, denoising), or generation tasks (e.g. interactive
control, inbetweening). These tasks can be regarded as mappings
that falls under either𝑇 : (𝑀,𝑢) → (ℎ) or𝑇 : (𝑀,𝑢) → (𝑀), where
𝑀 , 𝑢, and ℎ stand for motion, user control, and analysis features,
respectively. For example, measuring the similarity between two
motions is a mapping from two input motions to a scalar value,
and interactive character control is a sequential mapping from the
motion generated so far and the current user control (e.g. joystick
input) to a new motion. The fundamental concept behind using
deep learning to solve these tasks is to construct such mappings
using deep neural networks. The underlying assumption that most
existing methods rely on is that the skeletal structure remains the
same. Consequently, once a mapping is constructed, it can only
consume or generate motions with the same skeletal structure used
in the training procedure. This conventional assumption restricts
us from utilizing various datasets available online, as they are often
recorded with different skeletal structures from each other. Our
objective is to address this skeleton-dependency problem by solving
general animation tasks in a skeleton-agnostic manner.

Figure 2 illustrates an overview of our framework.We first project
(encode) an input motion, whose representation is tied with a spe-
cific skeleton, into the Skeleton-AgnosticMotionEmbedding (SAME)
space, where we perform general animation tasks. For instance, we
can measure the similarity between two motions in the embedding
space, even if their skeletal structures differ. In motion editing or
generation tasks, we initially perform the task in the SAME space
and then realize (decode) the processed embeddings as motions by
conditioning target skeletons. During this step, our framework pro-
vides the functionality to decode with arbitrary skeletons, ensuring
that the generated motions align with various target applications.

4 SKELETON-AGNOSTIC MOTION EMBEDDING

4.1 Data Representation
Skeletal motion data 𝑀 = (𝑆, 𝐷1:𝑇 ) generally consists of skeleton
data 𝑆 and motion data 𝐷 . The skeleton data represents the skeletal
structure of a character, which is defined by 𝑆 = {𝑝1:𝐽 , 𝑜1:𝐽 } where 𝐽
is the number of joints of the character, 𝑝 𝑗 ∈ R3 is the absolute joint
position and 𝑜 𝑗 ∈ R3 is the relative joint offset with respect to its
parent joint. It is worth noting that even for the same characters, 𝑆
could be different if they use different coordinate systems. Therefore,
we perform standardization beforehand where we express joint local
coordinates with respect to its coordinate at T-pose. The process
is as follows. We first make the character’s pose T-pose and align
its facing direction with the z-axis of the default coordinate system
while adjusting its height so that its feet touch the ground plane (XZ
plane). Then, we implant a new joint coordinate system𝐻 ′

𝑗
= (𝐼 , 𝑝 𝑗 )

for each joint, where 𝐼 ∈ 𝑅3𝑥3 is the identity matrix and 𝑝 𝑗 ∈ 𝑅3
is the global joint position. The process is the same operation as
"reset transformation" equipped in many 3D animation software.
The motion 𝐷1:𝑇 is a time series data, where 𝑇 is the number of

frames and is defined as 𝐷𝑡 = {𝑞𝑡1:𝐽 , 𝑝
𝑡
1:𝐽 , 𝑝

𝑡−1
1:𝐽 , 𝑣

𝑡
1:𝐽 , 𝑟

𝑡 , 𝑐𝑡1:𝐽 } at time
frame 𝑡 . We use the first two columns of rotation matrix [Zhou et al.
2019] to represent joint rotation 𝑞 𝑗 ∈ R6 with respect to its parent
coordinate system. Joint positions are computed in the character’s

facing frame [Holden et al. 2017]. The movement of the root joint
is computed by 𝑟𝑡 = (Δ𝑥,Δ𝑧,Δ𝜃, ℎ), where (Δ𝑥,Δ𝑧) and Δ𝜃 are
translation and rotation on the ground represented in the facing
frame at the previous frame, and ℎ is the absolute height from the
ground. Contact labels 𝑐𝑡1:𝐽 indicate whether joints are in contact
with the ground or not. The labels are automatically computed using
a simple heuristic based on joint height and velocity thresholds [Lee
et al. 2002].

4.2 GNN Autoencoder
In most deep learning-based approaches, the skeleton data was
often disregarded under the assumption that the skeletal structure
remains unchanged. However, we take advantage of both skeleton
and motion data to efficiently address various animation tasks in a
skeleton-agnostic manner. This poses a challenge due to the variable
dimensionality of the data. To overcome this, we propose a novel
autoencoder based on graph convolution networks (GCN). In our
architecture, character joints and their connections are represented
as nodes and edges in an input graph. This enables the encoder to
generate motion embeddings that are independent of the specific
skeleton structure.

Before discussing our novel autoencoder in detail, we first explain
the basic mechanism of Graph Convolution Networks (GCN) and the
operations used in our model. GCN learns meaningful features from
input graph data through message passing, where node features are
exchanged through graph edges, and each node’s feature is updated
based on spatial rules. We adopt the method proposed by Veličkovi’c
et al. [2017], which incorporates attention mechanisms for feature
updates. Given a node (joint in our data) feature x𝑖 , the spatial rule
to update a new feature x′

𝑖
is as follows:

x′𝑖 = 𝛼𝑖,𝑖Θx𝑖 +
∑︁

𝑗 ∈N(𝑖)
𝛼𝑖, 𝑗Θx𝑗 (1)

𝛼𝑖, 𝑗 =
exp

(
LeakyReLU

(
a⊤ [Θx𝑖 ∥Θx𝑗 ]

) )∑
𝑘∈N(𝑖)∪{𝑖 } exp (LeakyReLU (a⊤ [Θx𝑖 ∥Θx𝑘 ]))

(2)

where 𝑁 (𝑖) represents the set of neighbor indices, 𝑥 𝑗 is the feature
of the 𝑗-th neighbor, and ∥ denotes vector concatenation. Θ and a
are shared learnable parameters for all nodes, representing a linear
feed-forward layer and feature scaling weights, respectively. The
feature is updated by a linear combination of its own feature and
the features of its neighbors, weighted by attention weights 𝛼𝑖, 𝑗 that
determine each neighbor’s contribution. Prior to the combination,
the features undergo transformation by Θ. To enhance expressive
power, we incorporate multiple channels (multi-headed attention)
where several sets of Θ and a are learned concurrently. Additionally,
Graph Pooling is often integrated into GCN, aggregating node fea-
tures and generating a fixed-length vector. In our model, we use max
pooling. Figure 5 depicts the convolution and pooling operations
applied to an input skeletal pose.

Figure 3 depicts the structure of our novel autoencoder, designed
to generate embeddings for input motions on a frame-by-frame
basis, enabling the processing of time-varying inputs. The motion
embedding 𝑧1:𝑇 is constructed by encoding each frame of the input
motion. The encoder takes the source skeleton and pose data at each
frame as input, producing 𝑧𝑡 = Enc(𝑆src, 𝐷𝑡src), which represents a
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Fig. 3. Our autoencoder based on graph convolution networks to process
motions in a skeleton-agnostic manner.

fixed-size, skeleton-agnostic pose embedding. This encoding process
involves multiple graph attention convolution layers followed by
graph max pooling. The decoder takes a target skeleton 𝑆tgt and
a skeleton-agnostic pose embedding 𝑧𝑡 as input, generating pose
data 𝐷̂𝑡tgt = Dec(𝑆tgt, 𝑧𝑡 ) based on the target skeleton. Decoder
output 𝐷̂𝑡tgt = {𝑞𝑡tgt, 𝑟𝑡tgt, 𝑐𝑡tgt} is represented as a subset of 𝐷𝑡 and
omit redundant elements such as 𝑝𝑡 , 𝑝𝑡−1 and 𝑣𝑡 . Similar to the
encoder, the decoder comprises multiple graph convolution layers.
We concatenate 𝑧𝑡 to each target skeleton joint 𝑆1:𝐽 for the first
graph convolution layer. From the second layer, output from the
previous GCN layer is concatenated to 𝑆1:𝐽 . Since we want our final
result 𝐷̂𝑡tgt in a graph form, graph pooling is not applied to the
decoder.

4.3 Training
4.3.1 Data Preparation. To train our autoencoder for skeleton-
agnostic motion embedding, we start by creating a motion data-
base M = {𝑀1, 𝑀2, · · · , 𝑀𝑁 } by collecting diverse skeletal mo-
tions available online. Each motion clip 𝑀 = (𝑆, 𝐷1:𝑇 ) may have
a different skeleton from the other clips, as they were collected
from various sources. Furthermore, we build a skeleton database
S = {𝑆1, 𝑆2, · · · , 𝑆𝐾 } where 𝐾 represents the number of distinct
skeletons we acquired. Then we apply augmentation techniques to
both databases to enhance training effectiveness. While the detailed
pseudo-codes for augmentation are provided in Appendix, here we
outline the basic principles of the augmentation process.

Our skeleton augmentation algorithm applied to a skeleton data-
base S, generates an expanded database S′ with a wider range
of diverse skeletons. The algorithm randomly selects a skeleton 𝑆
from the database and introduces variations based on our observa-
tions. These variations include random creation or removal of spine,
neck, and shoulder joints and random scaling of limb lengths and
root height. Furthermore, we observed that some characters have
dummy joints near the hips and end-effectors. We also randomly
add dummy joints to account for this characteristic. The process of
generating random skeletons is repeated 𝐻 > 𝐾 times, resulting in
the augmented skeleton database S′ = {𝑆 ′1, 𝑆

′
2, · · · , 𝑆

′
𝐻
}, where 𝐻

represents the size of the augmented database.
The motion database augmentation takes the original motion

database M and augmented skeleton database S′ as input, re-
sulting in the augmented motion databaseM ′. For each motion
𝑀𝑖 = (𝑆𝑖 , 𝐷1:𝑇

𝑖
) inM, we randomly select target skeletons from S′.

We then use an off-the-shelf retargeting tool in MotionBuilder [Au-
todesk 2021] to retarget 𝑀𝑖 with the target skeletons, where we
use the default parameters provided by the software. The result-
ing augmented database contains new motion pairs with the same
semantics but realized by different skeletons. Note that the retar-
geting here is an offline procedure, converting one skeletal motion
to another skeletal motion only, while our autoencoder essentially
learns retargeting for the entire skeletons.

4.3.2 Loss. Given an augmented motion database, we randomly
select a sourcemotion𝑀src = (𝑆src, 𝐷1:𝑇

src ) and a target motion𝑀tgt =

(𝑆tgt, 𝐷1:𝑇
tgt ) that correspond to the same semantic motion. We then

feed them to the autoencoder, which produces an output motion
denoted as 𝐷̂1:𝑇

src→tgt using the equation:

𝐷̂1:𝑇
src→tgt = Dec(𝑆tgt, Enc(𝑆src, 𝐷1:𝑇

src )) . (3)

where the sequential feeding of pose data to the encoder and the
decoder are denoted as Enc(𝑆, 𝐷1:𝑇 ) and Dec(𝑆, 𝑧1:𝑇 ) respectively
for brevity. In this autoencoding process, if the source and target
skeletons are the same, the output motion should be identical to the
input motion. On the other hand, if they are different, the output
motion 𝐷̂1:𝑇

src→tgt should be the same as the target motion 𝐷1:𝑇
tgt . Note

that both cases can be processed in a unified manner by comparing
the model output 𝐷̂1:𝑇

src→tgt with the target motion 𝐷1:𝑇
tgt only. Al-

though motion reconstruction is the most crucial condition that the
autoencoder should satisfy, training solely based on this condition
often leads to local minima that do not produce visually satisfac-
tory reconstruction results. Therefore, we incorporate auxiliary loss
terms into our training process. The loss function used to train our
model is defined as follows:

𝐿 =
∑︁

𝑡=1,· · · ,𝐹
𝐿𝑡rec + 𝐿𝑡vel + 𝐿

𝑡
con + 𝐿𝑡𝑧 , (4)

where 𝐹 is the total number of frames in the training batch. Our loss
function consists of four terms: the reconstruction loss, the velocity
loss, the contact label loss, and the embedding consistency loss.

Reconstruction Loss. The reconstruction loss, as the name implies,
is a term that ensures the reconstruction condition. It compares the
output motion 𝐷̂1:𝑇

src→tgt with the ground truth motion 𝐷1:𝑇
tgt .

𝐿𝑡rec = 5∥𝑞𝑡tgt − 𝑞𝑡src→tgt∥2 + 0.01∥𝑝𝑡tgt − 𝐹𝐾 (𝑞𝑡src→tgt)∥2

+10∥𝑟𝑡tgt − 𝑟𝑡src→tgt∥2
(5)

where reconstruction quality is evaluated by errors in joint rotation
𝑞, joint position 𝑝 , and root joint movement 𝑟 . To compute joint po-
sitions from joint rotations, we implement the forward kinematics
layer called 𝐹𝐾 . Implementing 𝐹𝐾 for our framework is challenging
because it should be able to adapt to multiple skeletons automati-
cally, whereas 𝐹𝐾 in other methods was a fixed mapping [Pavllo
et al. 2018]. To address this, we compute 𝐹𝐾 for joints of the same
depth in a batch, sequentially from zero-depth joints (root joints) to
the maximum-depth joints.

Temporal Coherence Loss. Our autoencoder operates on a per-
frame basis, allowing it to process motions of different lengths in
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the same manner. To ensure temporal coherence between adjacent
frames, we incorporate a velocity loss which is computed as follows:

𝐿𝑡vel = ∥𝑣
𝑡 − 𝑣𝑡 ∥2

𝑣𝑡 = (𝑝𝑡 − 𝑝𝑡−1)/Δ𝑡
𝑣𝑡 = (𝐹𝐾 (𝑞𝑡src→tgt) − 𝐹𝐾 (𝑞𝑡−1src→tgt))/Δ𝑡

(6)

where we compare the output joint linear velocity with the ground
truth joint linear velocity [Tevet et al. 2023]. In addition, to penalize
excessive acceleration change, we use jerk loss which is computed
as follows:

𝐿𝑡jerk = ∥(𝑎𝑡 − 𝑎𝑡−1)/Δ𝑡 ∥2

𝑎𝑡 = (𝑣𝑡 − 𝑣𝑡−1)/Δ𝑡
(7)

Contact Loss. Foot sliding is a common artifact encountered in
deep learning-based motion generation, arising from the smoothing
effect of the network output. Handling this artifact is crucial as our
autoencoder is expected to perform retargeting between characters
with highly different skeletons. To address this, we introduce a
contact loss similar to [Harvey et al. 2020a; Holden et al. 2017; Lee
et al. 2018; Shi et al. 2020; Tevet et al. 2023], which is defined as
follows:

𝐿𝑡con = ∥𝑐𝑡 − 𝑐𝑡 ∥2 + 𝑐𝑡 ∥𝑣𝑡 ∥2 (8)

+∥clamp(1 − 𝑦𝑡

𝑦thres
, 0, 1) · 𝑣𝑡 ∥2 + ∥min(𝑦𝑡 , 0)∥2 (9)

The first term penalizes the discrepancy between the ground truth
contact label 𝑐𝑡 and the predicted contact label 𝑐𝑡 The second term
aims to minimize joint linear velocity when contact is activated. the
joint position is close to the ground, where we check if its height
is less than a threshold 𝑦𝑡ℎ𝑟𝑒𝑠 (3cm in our implementation). The
last term prevents joint positions from penetrating the ground. The
contact loss is computed for all joints.

Embedding Consistency Loss. The objective of the encoder is to
learn a skeleton-agnostic motion embedding, where motions with
different skeletons but identical semantics should be mapped to the
same embedding. This condition can be expressed as follows [Aber-
man et al. 2020]:

𝐿𝑡𝑧 = ∥Enc(𝑆𝑠𝑟𝑐 , 𝐷𝑡𝑠𝑟𝑐 ) − Enc(𝑆𝑡𝑔𝑡 , 𝐷𝑡𝑡𝑔𝑡 ))∥2 . (10)

where we can directly measure the difference of the embeddings
computed from two input motions (𝑆src, 𝐷𝑡src), (𝑆tgt, 𝐷𝑡tgt) that rep-
resent identical semantics but are realized by different skeletons
(𝑆src ≠ 𝑆tgt).

5 SKELETON-AGNOSTIC ANIMATION TASKS
In this section, we will describe how we address general animation
tasks in a skeleton-agnostic manner using the autoencoder we have
built.

5.1 Motion Classification
Motion classification aims to assign a category label to the input
motion. It can be represented as a mapping 𝑇 : 𝑀 → ℎ, where𝑀 is
the input motion and ℎ is the output label. Using the encoder of our

autoencoder we’ve built, we learn a mapping 𝑇 : 𝑧 → ℎ from the
SAME space to the output label. This way, we can classify motions
with different skeletons using a unified model.

5.2 Retargeting
Retargeting is an animation task that involves transforming motions
from a source character to motions suitable for a target character,
typically with different skeletal structures. In our framework, the
autoencoding process described in Equation 3 is essentially equiva-
lent to the retargeting task when the source and target skeletons
differ.

5.3 Reconstruction of Missing Joints
During the retargeting process, if the target character has extra
links that the source character does not have, traditional algorithms
typically solve this by transforming the motions of joints only that
have corresponding counterparts while the motions of other joints
remain fixed. However, our framework offers the capability to re-
construct new motions for extra joints. When selecting a motion
pair (𝑆src, 𝐷1:𝑇

src ) and (𝑆tgt, 𝐷1:𝑇
tgt ) from the training motion database,

we randomly eliminate an entire limb or its partial links. Joints are
randomly selected and all the links between the selected joint and
its end-effector are removed from the skeleton. In the GCN context,
this can be implemented by masking the joints and edges designated
for deletion while excluding their corresponding loss terms as well.
We apply this elimination process to both the source and target
skeletons. We can also fine-tune a model to focus on specific joint
reconstruction. We demonstrate two scenarios for missing joints
reconstruction:
• Full-body motion reconstruction from upper-body motion.
• Finger motion reconstruction from full-body motion.

5.4 Motion Similarity
Assessing the similarity between two input motions is a fundamen-
tal animation task that has applications in various areas, such as
searching for similar motions in large databases and constructing
motion graphs that connect similar frames. Traditionally, similarity
metrics defined in the motion space, such as comparing joint an-
gles and velocities, have been widely used, and other sophisticated
metrics have also been proposed [Aristidou et al. 2018; Müller and
Röder 2006]. Our framework can also assess the similarity between
two input motions𝑀𝑎 = (𝑆𝑎, 𝐷1:𝑇𝑎

𝑎 ),𝑀𝑏 = (𝑆𝑏 , 𝐷
1:𝑇𝑏
𝑏
) in the latent

space:

𝑧
𝑡𝑎
𝑎 , 𝑧

𝑡𝑏
𝑏

= Enc(𝑆𝑎, 𝐷𝑡𝑎𝑎 ), Enc(𝑆𝑏 , 𝐷
𝑡𝑏
𝑏
)

𝑑𝑝 (𝑥,𝑦) = ∥𝑥 − 𝑦∥2

𝑑𝑚 = DTW(𝑧1:𝑇𝑎𝑎 , 𝑧
1:𝑇𝑏
𝑏

, 𝑑𝑝 (·, ·))

(11)

where dynamic time warping (DTW) [Müller 2007] is used to handle
the difference in motion length.

5.5 Interactive Character Controllers
Interactive character controllers generate responsive motions based
on user control, commonly used in applications like computer games.
These controllers can be represented as a mapping function 𝑇 :
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𝐷𝑡 , 𝑢𝑡 → 𝐷𝑡+1, where the current pose 𝐷𝑡 and user control 𝑢𝑡 are
used to compute the next pose 𝐷𝑡+1. Motion matching is a popular
technique for implementing this mapping which involves searching
for the best next pose 𝐷𝑡+1 in a motion database {(𝐷𝑖 ,𝐶𝑖 )𝑖=1,2,· · ·}.
𝐶𝑖 is an additional annotation of data 𝐷𝑖 , such as motion category,
often precomputed and stored along with the data. Search cost is
described as a weighted sum of two terms,𝜙1 (𝐷𝑡 , 𝐷𝑖 )+𝑤 ·𝜙2 (𝐷𝑖 ,𝐶𝑖 ),
where𝜙1, 𝜙2, and𝑤 represent a transition cost from the current pose
𝐷𝑡 to pose 𝐷𝑖 in the database, user control satisfaction cost, and
relative weight between them, respectively.
Our framework enables motion matching with heterogenous

motion database.We first construct a newmotionmatching database
{(𝑧𝑖 ,𝐶𝑖 )𝑖=1,2,· · ·} by converting the original database into the SAME
space, where 𝑧𝑖 represents the pose embeddings. During runtime,
we compute 𝜙1 by

𝜙SAME
1 (𝐷𝑡 , 𝑧𝑖 ) = ∥Enc(𝑆, 𝐷𝑡 ) − 𝑧𝑖 ∥2, (12)

where the current pose 𝐷𝑡 of the character 𝑆 is first projected into
the SAME space to measure squared 𝐿2 distance, by which we find
the nearest neighbors. Once we find out the best embedding 𝑧∗
minimizing both 𝜙1 and 𝜙2, it is then realized back to the original
motion space via the decoding process Dec(𝑆, 𝑧∗). This process
repeats in an auto-regressive manner. By using only a single motion
matching module implemented using our framework for various
characters, it can reduce huge memory consumption. Moreover, on-
the-fly morphing to other characters is even possible by changing
the target skeleton during decoding.

6 EXPERIMENTS

6.1 Implementation Detail
Our framework is implemented primarily in Python, utilizing the Py-
Torch library [Paszke et al. 2019] for the deep learning components.
For graph-related operations, we utilize the PyTorch-Geometric li-
brary [Fey and Lenssen 2019]. The encoder and decoder modules
in our framework are built using multi-headed graph attention lay-
ers. For a more detailed description of the network architecture,
please refer to Appendix. During training, we employ a minibatch
size of 2048 (256 samples of 8 consequent frames) and utilize the
Adam optimizer with an initial learning rate of 1e-2 and decreas-
ing exponentially down to 1e-4 with 𝛾 = 0.99. While the detailed
pseudo-codes for augmentation are provided in Appendix, here we
outline the basic principles of the augmentation process.

6.2 Training Data Preparation
To train a base autoencoder model, we prepared Strain of 92 char-
acter variations and Mtrain comprising 130 minutes of motions
from various sources including Lafan1 [Harvey et al. 2020b], AC-
CAD [OSU [n.d.]], TotalCapture [Trumble et al. 2017], PFNN [Holden
et al. 2017], and SFU dataset [SFU 2011]. We excluded motions in-
volving object interactions, such as climbing stairs or lying on a
bed. For more detail of the dataset composition, please refer to Ap-
pendix Section A. Next, we constructed S′train through the skeleton
augmentation algorithm, andM ′train by applying the motion aug-
mentation algorithm with S′train andMtrain. Augmented datasets
comprise 780 minutes of motions and 160 types of skeletons.

Fig. 4. Embeddings of 3 different motions (top-left: walk, top-middle: jump-
rope, top-right: tennis) for nine different skeletons (bottom). The embedding
are created by our autoencoder then projected into 3D space via Principle
Component Analysis.

6.3 Embedding Space Analysis
6.3.1 Visualization. Figure 4 shows the embeddings of motions
with identical semantics but different skeletons, which were pro-
jected into a 2D space using Principle Component Analysis (sse
Figure 4). We conducted tests using three motion clips (walk, jump-
rope, and tennis) with 9 different skeletons. The result shows that
our autoencoder produces highly similar embeddings for motions
that share the same semantics, which implies that our SAME space
effectively captures the semantics of input motions well.

6.3.2 Arithmetic Operations. We have observed that arithmetic op-
erations such as addition, subtraction, or multiplication on our mo-
tion embedding often yield semantically meaningful and valid re-
sults, even though such constraints were not explicitly enforced
during training. Let’s say we have three motions 𝑀1:𝑇

𝑎 , 𝑀1:𝑇
𝑏

, and
𝑀1:𝑇
𝑐 representing a standing motion with hand waving, a standing

motion, and a walking motion, respectively, and 𝑧1:𝑇𝑎 , 𝑧1:𝑇
𝑏

, and 𝑧1:𝑇𝑐
are their embeddings computed by our method. Figure 10 showcases
examples of such operations, where 𝑧1:𝑇𝑎 − 𝑧1:𝑇

𝑏
+ 𝑧1:𝑇𝑐 generates a

walking motion with hand waving, and 0.5 · (𝑧1:𝑇𝑎 − 𝑧1:𝑇
𝑏
) + 𝑧1:𝑇𝑐

generates a walking motion with a smaller hand waving. These
results demonstrate the potential of our framework to perform mo-
tion composition and manipulation in a meaningful and intuitive
manner.

Table 1. Component Ablation (Autoencoder Reconstruction Performance)

JR [rad] RT [cm] JP [cm] FS GP [cm]
Ours 0.2769 1.2846 5.2018 0.0075 0.0034
w/o contact loss 0.2534 1.4482 4.5685 0.1056 0.1345
w/o velocity loss 0.2734 1.5028 6.0059 0.0098 0.0037
w/o random joint
masking

0.2756 1.7324 5.7918 0.0291 0.0248

S′ by one skele-
ton

0.3073 2.204 9.1537 0.0283 0.0367
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6.4 Evaluation of Reconstruction on Unseen Data
We evaluated the generalization capability of our learned autoen-
coder by measuring the reconstruction performance on unseen data
that comprises 11 skeletal variations and 67 minutes of motions
from Mixamo [Adobe 2021], MotionBuilder [Autodesk 2021] and
SNU Actor database [SNU 2013]. Please refer to Appendix Table
3 for the detailed composition. The first row in Table 1 shows the
average errors in reconstruction for the motions in the test dataset.
The errors were measured using five metrics: joint rotation (JR)∑
𝑡

∑
𝑗 ∥𝑙𝑜𝑔(𝑅(𝑞𝑡𝑗 )

−1𝑅(𝑞𝑡
𝑗
))∥, joint position (JP)

∑
𝑡

∑
𝑗 ∥𝑝𝑡𝑗 − 𝑝

𝑡
𝑗
∥,

root trajectory (RT)
∑
𝑡 ∥𝑝𝑡root − 𝑝𝑡root∥, foot skating (FS) [Zhang

and van de Panne 2018], and ground penetration (GP)
∑
𝑡

∑
𝑗 𝑑 𝑗 ,

where 𝑅 is 3x3 rotation matrix constructed by 6D representation,
𝑙𝑜𝑔 projects 𝑅 to axis-angle representation, 𝑝𝑡root is the root joint
position projected on the ground, 𝑑 𝑗 is the penetration depth of 𝑗-th
joint to the ground. When computing the metrics, all motion clips
were first split into several one-second=long motions to account
for variations in duration. The result demonstrates that our learned
autoencoder achieves successful reconstruction even for unseen
motions with unseen skeletons, yielding small errors.

Table 2. Performance comparisons on the retargeting task.

(unit: 103)
Method Intra Cross
[Villegas et al. 2018] 6.24 243
[Aberman et al. 2020] (no 𝐿𝑎𝑑𝑣 ) 0.47 3.81
[Aberman et al. 2020] (full approach) 2.76 2.25
Ours 2.91 2.47

6.5 Animation Tasks
We showcase the results of the animation tasks introduced in Sec-
tion 5, which we solve in a skeleton-agnostic manner using our
framework. The results are best seen in the supplemental video.
Note that we ultimately aim to develop a base model capable of
performing various downstream tasks using the specific dataset
of interest, which may not be included during the base model’s
training process. Therefore, for animation tasks, we utilized dataset
that were not used during autoencoder training to simulate such
scenario (Appendix Table 3).

6.5.1 Motion Classification. We trained a multi-label classifier us-
ing a Transformer [Vaswani et al. 2017] consisting of a single-layer
encoder and decoder. For training, we gathered 276 motion clips of
40 subjects from the CMU motion database [CMU 2006], belonging
to 30 different categories. From this dataset, we randomly selected
1-4 clips per category to create a validation set of 60 clips. The re-
maining 216 clips formed the training set as a result. We employed
the categorical cross-entropy loss function and the Adam optimizer
with a minibatch size of 48. Our classifier achieved an accuracy of
95% (57/60) on the validation set. This result highlights the potential
of our embedding as valuable features for classification tasks.

6.5.2 Retargeting. Figure 9 showcases the retargeted motions to 6
characters from a single input motion, whose skeletons are signifi-
cantly different from each other. Source motions and target charac-
ters are from a separate database and unseen during training.

6.5.3 Motion Similarity. Given motions from Mixamo dataset, we
search for the most similar motions from MotionBuilder database,
which has different skeleton configuration. Figure 7 illustrates ex-
amples of search results, including squat, raising arms, and boxing
uppercut.

6.5.4 Missing Joint Reconstruction. First, our method succeeds to
reconstruct high-quality full-bodymotions from the upper-bodymo-
tions only for various scenarios including walking, running, squat,
kicking, and boxing (see Figure 6). We fine-tuned the encoder of the
base model by masking the lower body part to the encoder. Second,
our method can also synthesize extra finger motions given full-body
motions without fingers. Using Mixamo dataset with finger motion,
we fine-tuned the decoder by feeding motion without fingers to the
encoder and a target skeleton with finger to the decoder. We tested
generating finger motions for MotionBuilder dataset which does
not have ground truth finger motion and is unseen during training
(see Figure 8).

6.5.5 Interactive Character Control via Motion Matching. We im-
plement a motion matching controller using a database consisting
of three distinctive types of motions: locomotion from LAFAN1,
crouching from PFNN, and kicking from SNU ActorDB. Figure 1
demonstrates how our motion matching controller enables users
to generate motions seamlessly transitioning among these hetero-
geneous datasets and even allows for character morphing on the
fly.

6.6 Ablation Study
To verify the effectiveness of the design choices made during the
development of our framework, we conducted ablation study, mea-
suring the same five metrics used in Section 6.4. The results are
presented in Table 1. Our method, including all the components,
clearly outperforms all the variations where one of the components
is missing.

6.7 Comparison with Other Methods
Table 2 shows comparisons of retargeting performance with two
previous state-of-the-art retargeting methods [Aberman et al. 2020]
and [Villegas et al. 2018]. We computed the average error normal-
ized by the character height using the test data employed in the
two earlier studies. Among the test data consisting of 106 motion
clips, we excluded 11 clips captured with objects (e.g., bar-hanging)
because such object-interaction motions were completely excluded
during the training of our model. The result shows that our method
using only a single network demonstrates comparable performance
to the previous methods specialized for the retargeting task.

7 DISCUSSION
We present a framework for solving animation tasks in a skeleton-
agnostic manner. Our approach utilizes a novel autoencoder based
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on a graph convolution network. The autoencoder learns an embed-
ding space called Skeleton-Agnostic Motion Embedding (SAME),
which efficiently captures the semantics of motion while disregard-
ing skeleton-specific information during the encoding process. This
enables us to perform general animation tasks, such as motion
classification, retargeting, and interactive character control, in a
skeleton-agnostic manner. The processed embeddings can then be
used to generate motions with arbitrary skeletons based on the
target applications.
While our framework has shown success in solving animation

tasks in a skeleton-agnostic manner, there are some limitations to
consider. Firstly, training our autoencoder requires motion pairs
with identical semantics but distinct skeletons. Although we’ve
shown the effectiveness of our proposed semi-automatic augmen-
tation algorithm for biped characters, it is not straightforward to
expand beyond human-like characters. Secondly, like other deep
learning-based methods, the quality of generated motions and the
ability to process unseen inputs are constrained by the training data.
If the character has functional joints (e.g. tails, ornaments) that are
unseen during training or has a completely different t-pose, the
result quality degrades. Training our autoencoder in an unsuper-
vised way or expanding our framework to handle a broader range
of subjects are interesting future research directions.
We believe that our approach has the potential to pave the way

for the development of a large-scale motion model by enabling the
integration and utilization of numerous datasets, not only those
currently available but also future ones. This would contribute to
the advancement of the field of computer animation and related
research areas.
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Fig. 5. Network operations used in ourmodel. Graph convolution update the
graph node (joint) feature by aggregating its own and neighbors’ features.
Graph pooling generates a fixed-length vector by summarizing all node
features.

Fig. 6. Full-body reconstruction from the upper body only.

Fig. 7. Motion similarity. The left (green) is a search key motion from Mix-
amo dataset, and the right (red) is the most similar motion searched from
the MotionBuilder dataset. We assess the similarity between two input
motions of different skeletons by measuring distance in the SAME space.
Dynamic time warping is used to handle the difference in motion length.

Fig. 8. Finger motion reconstruction from the full body without finger
motions.
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Fig. 9. Retargeting. The left most character (purple) is the source and the remaining characters are retargeted.

Fig. 10. Arithmetic operations in the SAME space. The top figure represents "Standing motion with hand waving (pink)" minus "standing motion (blue)" plus
"walking motion (green)", and the bottom figure represents 0.5 times ["Standing motion with hand waving" minus "standing motion"] plus "walking motion."
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ALGORITHM 1: Skeleton Augmentation
Input :S = {𝑆1, 𝑆2, . . . , 𝑆𝐾 }
Output :S′ = {𝑆′1, 𝑆′2, . . . , 𝑆′𝐻 }
S′ ← {}

for 𝑖 ← 1 to 𝐻 do
𝑆𝑖 ← Randomly Select from S;
𝑆′
𝑖
← AddVariation(𝑆𝑖);

Append 𝑆′
𝑖
to S′;

end
return S′

Function AddVariation(𝑆):
// Copy the given skeletal structure

𝑆′ ← 𝑆 ;
for joint in 𝑆′.joints do

if joint ∈ { Spine, Neck } then
randomly add or remove joints

end
if joint ∈ { Hip, Shoulder } then

randomly add dummy joints
end
if joint ∈ { End-Effectors } then

randomly set joint.offset as zero vector
end
randomly scale joint.offset

end
randomly scale 𝑆′.height;
return 𝑆′

ALGORITHM 2: Motion Augmentation

Input :M = {𝑀1, 𝑀2, . . . , 𝑀𝑁 } // Motion DB

S′ = {𝑆′1, 𝑆
′
2, . . . , 𝑆

′
𝐻
} // Augmented Skeleton DB

Output :M′ = {𝑀′1,𝑀2, . . . ,𝑀′𝐿 } // Augmented Motion DB.

// 𝑁: size of input motion DB M
// 𝐵: retarget batch size

// 𝑅: number of retargeting per each motion
M′ ← {}

for 𝑖 ← 1 to ceil (𝑁 /𝐵) do
Sample batch fromM
for 𝑗 ← 1 to 𝑅 do

Random Select from 𝑆′
𝑖
from S′;

Retarget batch into a target skeleton;
Append retargeted batch intoM′;

end
end
returnM′

A DATA COMPOSITION
Here, we outline the data employed for training and testing the base
autoencoder as well as for animation tasks (Table 3). For training
data, it presents the volume of data we originally collected which is
augmented to generate training pairs (Section 4.3.1). For LAFAN1,
PFNN, Mixamo, and SNU Actor DB, motion clips were randomly
selected from their respective databases because they include many

Table 3. Motion Data Composition

Source Size [min] Subjects
AutoEncoder Train/Test

Train

LAFAN1 41.72 1

(Section 4.3)

ACAAD 19.10 2
TotalCapture 35.32 5
PFNN 22.79 1
SFU 11.73 7

Test Mixamo Motion 28.04 9

(Section 6.4 and 6.6) MotionBuilder 7.41 1
SNU Actor DB 31.79 1

Motion Classification (Section 6.5.1)
Train CMU 45.28 37
Test CMU 16.13 27
Similar Motion Search (Section 6.5.3)
Search key Mixamo Motion 8.99 1
Search DB MotionBuilder 7.41 1
Finger Reconstruction (Section 6.5.4)
Train Mixamo Motion 7.09 1
Test MotionBuilder 7.41 1
Interaction Character Control (Section 6.5.5)

Motion Matching LAFAN1 8.25 1

Database PFNN 0.74 1
SNU Actor DB 0.21 1

Table 4. Autoencoder architecture.

Name Layers In Dim Out Dim Heads

Encoder

GAT Conv + ReLU 32 16 16
GAT Conv + ReLU 256 16 16
GAT Conv + ReLU 256 16 16

GAT Conv 256 32 1
Max Pooling 32 32 -

Decoder

GAT Conv + ReLU 38 16 16
GAT Conv + ReLU 262 16 16
GAT Conv + ReLU 262 16 16

GAT Conv 262 11 1

repetitive motions. We excluded motions involving object interac-
tions, such as climbing stairs or lying on a bed. For lower-body
reconstruction (Section 6.5.4), we fine-tuned the encoder using the
same dataset we used for training base autoencoder model.

B DATA AUGMENTATION ALGORITHMS
We first augment the collected skeleton dataset by randomizing
topology, body proportion, and height. Algorithm 1 depicts the
pseudo-code of the process. Then, we generate training motion
pairs by retargeting motion dataset to random skeletons (Algorithm
2).
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C AUTOENCODER ARCHITECTURE
Table 4 shows each layer component and dimensions of our pro-
posed autoencoder.We usedmulti-head graph attention layers (GAT-
Conv) with 16 heads and ReLU activation function. To aggregate

joint features as a fixed-size latent vector, we used max pooling
operator at the end of the encoder.
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